

Home Search Collections Journals About Contact us My IOPscience

Critical properties near σ dimensions for long-range interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1976 J. Phys. A: Math. Gen. 9 L119

(http://iopscience.iop.org/0305-4470/9/9/003)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.108 The article was downloaded on 02/06/2010 at 05:47

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Critical properties near σ dimensions for long-range interactions

E Brézin[†], J Zinn-Justin[†] and J C Le Guillou[‡]

† Service de Physique Théorique, Centre d'Etudes Nucléaires de Saclay, BP No. 2, 91190
Gif-sur-Yvette, France
‡ Laboratoire de Physique Théorique et Hautes Energies, Tour 16, Université Paris VI,

+ Laboratoire de Physique Théorique et Hautes Energies, Tour To, Université Paris VI, 75230 Paris Cédex 05, France

Received 9 July 1976

Abstract. We show that the critical temperature for *n*-vector models with long-range interaction falling off at infinity as $1/r^{d+\sigma}$ vanishes when $d = \sigma$, provided *n* is larger than one. As a consequence, we calculate the critical exponents as power series in $(d - \sigma)$ up to second order.

In this letter we consider the critical properties of an *n*-vector model with long-range interaction, at a dimension at which the critical temperature becomes small. It is well known that long-range attractive interactions decaying in *d* dimensions as $1/r^{d+\sigma}$ $(0 < \sigma < 2)$ lead to critical properties which differ in many respects from those of short-range interactions. Fisher *et al* (1972) have shown that Landau theory holds for $d > 2\sigma$ and for $d < 2\sigma$ they have performed an expansion in powers of $2\sigma - d$. Ma (1973) has used the 1/n expansion for the same problem. In this letter we report the results of a renormalization group analysis of the low temperature expansion. The theory is analogous in many respects to the one appropriate to short-range forces near two dimensions (Brezin and Zinn-Justin 1976) and we shall use similar notations. It leads to a characterization of the critical behaviour in the vicinity of the dimension σ .

We shall first give the results of this analysis. The critical temperature vanishes when d approaches σ for any n larger than one, and is proportional to $(d-\sigma)/(n-1)$. At order $(d-\sigma)^2$ the critical exponents are

$$\eta = 2 - \sigma \tag{1}$$

$$\frac{1}{\nu} = d - \sigma + \frac{(d - \sigma)^2}{2(n - 1)} \left[\psi(\sigma) - \psi(1) + \frac{2}{\sigma} + \pi \cot\left(\frac{\pi\sigma}{2}\right) \right] + \mathcal{O}(d - \sigma)^3$$
(2)

in which the function ψ is the logarithmic derivative of the function Γ .

The exponent η remains, as in previous studies (Fisher *et al* 1972, Ma 1973), fixed to its classical value $2-\sigma$, to all orders in $(d-\sigma)$. For n = 1 and $d > \sigma$, t_c goes to infinity in our model and, as for the similar case of the short-range XY model in two dimensions, it is presumably a feature of the continuous field theory that we have studied which would not be present in the lattice problem. If n = 1 and $d = \sigma$ the function W vanishes identically and the theory is scale invariant for any value of the temperature. These results are obtained from the renormalization group equation fulfilled by the vertex functions:

$$\left[\mu\frac{\partial}{\partial\mu} + W(t)\frac{\partial}{\partial t} + \left(\frac{1}{2}\zeta(t) + \frac{W(t)}{t} - (d-\sigma)\right)H\frac{\partial}{\partial H}\right]\Gamma^{(N)}(\boldsymbol{p}, t, H, \mu) = 0 \quad (3)$$

in which t is the (renormalized) temperature and μ the arbitrary (inverse) length scale which defines the renormalized theory. In this problem $\zeta(t)$ and W(t) are not independent and to all orders in t one can show that

$$\zeta(t) = d - \sigma - \frac{W(t)}{t}.$$
(4)

An explicit calculation gives (in the dimensional regularization method)

$$W(t) = (d - \sigma)t - (n - 1)t^{2} - \frac{(n - 1)}{2}t^{3} \left[\psi(\sigma) - \psi(1) + \frac{2}{\sigma} + \pi \cot\left(\frac{\pi\sigma}{2}\right)\right] + O(t^{4}).$$
(5)

We have included in the renormalized temperature the factor $2\pi^{d/2}/(2\pi)^d \Gamma(d/2)$. For *n* larger than one, one reads from equation (5) that the theory is asymptotically free in σ dimensions, and that there is an ultraviolet fixed point of order $(d-\sigma)/(n-1)$ for *d* larger than σ . Let us recall that the exponents are given by the equations:

$$W(t_c) = 0, \qquad W'(t_c) < 0$$
 (6a)

$$1/\nu = -W'(t_c) \tag{6b}$$

$$d-2+\eta=\zeta(t_c). \tag{6c}$$

Let us briefly sketch the underlying theory. We start with classical spin vectors of fixed unit length. Below T_c there are (n-1) modes, transverse to the spontaneous magnetization. The long-distance limit of this theory leads to a continuous theory with an effective Hamiltonian which couples these $(n-1)\pi$ modes. The partition function in a field H is thus given by the functional integral:

$$Z(H) = \int \prod_{x} \frac{\mathrm{d}\boldsymbol{\pi}(x)}{\sqrt{(1-\boldsymbol{\pi}^{2}(x))}} \exp\left(-\frac{1}{2T} \int \mathrm{d}^{d} X[\boldsymbol{\pi} \Delta^{\sigma} \boldsymbol{\pi} + \sqrt{(1-\boldsymbol{\pi}^{2})} \Delta^{\sigma} \sqrt{(1-\boldsymbol{\pi}^{2})} - 2H\sqrt{(1-\boldsymbol{\pi}^{2})}\right)$$

in which the Laplacian raised to the power σ is defined in Fourier space.

Power counting indicates that this theory is renormalizable in σ dimensions. The structure of the renormalized theory is obtained through a temperature and a field strength renormalization, respectively called Z_1 and Z. However, the coefficient of p^{σ} in the inverse propagator of the π is not divergent and thus $Z_1 = Z$.

The calculation of the divergent part of Z may be made by requiring that $\langle \sqrt{(Z^{-1} - \pi^2)} \rangle$ should be finite. This yields, up to two-loop order, in the dimensional regularization method

$$Z^{1/2} = 1 + \frac{(n-1)t}{2(d-\sigma)} + \frac{(n-1)(3n-5)}{8(d-\sigma)^2} t^2 + \frac{(n-1)}{(d-\sigma)^2} t^2 \left\{ 1 + \frac{d-\sigma}{2} \left[\psi(\sigma) - \psi(1) + \frac{2}{\sigma} + \pi \cot\left(\frac{\pi\sigma}{2}\right) \right] \right\} + O(t^3),$$

from which W(t) is calculated by the formula

$$W(t) = (d - \sigma)t \left(1 + t \frac{d \ln Z}{dt}\right)^{-1}$$

References

Brézin E and Zinn-Justin J 1976 Phys. Rev. B to be published Fisher M E, Ma S K and Nickel B G 1972 Phys. Rev. Lett. 29 917 Ma S K 1973 Phys. Rev. A 7 2172